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A.1 Advancing and implementing an 
updated methodology for the Rural 
Access Index (SDG 9.1.1)  

The Rural Access Index (RAI) is one of the most 
important global development indicators in the 
transport sector. It is currently the only indicator 
for the SDGs that directly measures rural 
accessibility, and it does so by assessing rural 
population’s access to all-season roads. 

The RAI was adopted as Sustainable 
Development Goal (SDG) indicator 9.1.1 in 2015, 
and is presented for the first time at the SDR in 
this current edition. The dataset developed and 
presented here implements and expands on the 
most recent official methodology put forward by 
the World Bank, the custodian of the indicator. 
This dataset was produced by UN SDSN’s SDG 
Transformation Center and is, to date, the only 
publicly available application of this particular 
method at a global scale. 

 

Background 
 
The Rural Access Index (RAI) was developed by 
the World Bank in 2006, originally as a measure 
of poverty (Roberts et al., 2006). The original 
2006 methodology based itself on pre-existing 
household surveys, which had several 
disadvantages including inconsistency across 
countries, lack of regular updates and cost 
constraints, which limited the index’s 
sustainability and accuracy (Workman and 
McPherson, 2021). 

A new methodology taking advantage of 
geospatial techniques was published under the 
“Measuring rural access using new technologies” 
report in 2016 (World Bank, 2016), thanks to a 
partnership established between the World 
Bank, the Department for International 
Development (DFID) of the United Kingdom and 
the Research for Community Access Partnership 
(ReCAP). 

Later, in 2019, the World Bank commissioned a 
new ReCAP project led by the Transport 
Research Laboratory (TRL). The RAI 
Supplemental Guidelines (Workman and 
McPherson, 2019) provided new and detailed 
guidance for calculating the RAI, notably with an 
alternative approach to the all-season aspect of 
RAI, focusing on the changing accessibility profile 
of the road networks rather than relying on road 
surface quality alone or scarce physical 
measurements for road conditions. 
Nevertheless, neither the 2016 nor the 2019 
methodologies were implemented globally, being 
restricted to more in-depth studies for selected 
countries. 

The dataset developed and used in this year’s 
SDR is, to the extent of our knowledge, the first 
global application of the 2019 TRL methodology 
(Workman and McPherson, 2019), although 
some changes and refinements have been 
proposed. 

 

Methodology 
 
The RAI is defined as the “proportion of the rural 
population who lives within 2 km of an all-season 
road”. There is a common understanding that the 
2 km threshold is a reasonable extent for 
people’s normal economic and social purposes, 
and equates to approximately 20-25 minutes 
walking time. An all-season road is one that is 
motorable all year, but may be temporarily 
unavailable during inclement weather (Roberts, 
Shyam, & Rastogi, 2006). 

The methodology consists of mapping where all-
season roads are, applying a 2km buffer to them, 
and then assessing the proportion of the rural 
populations that falls within. This generates 
further questions such as defining what is urban 
and what is rural and assessing which roads 
provide all-season access or not, considering 
that no timely database containing that 
information is currently available at a global scale. 



 
Figure 1 Summary of the RAI methodology 

While other methodologies equate road surface 
to all-season status, the TRL 2019 methodology 
took into consideration that many rural roads in 
low-income countries (and even in large high-
income countries) are unpaved, and often do 
provide all-season access. The innovation of this 
particular method (Workman and McPherson, 
2019) lies in how the all-season status of roads 
is handled: instead of simply removing unpaved 
roads from the network, factors associated with 
inaccessibility are superimposed, and the 
population estimated to have access to a given 
road is kept in proportion to the probability that 
the road might be all-season.  

 

Data sources 
 
The indicator relies on four major geospatial data 
sets: those measuring land use (rural or urban), 
population distribution, road network extent and 
the all-season status of roads. 

Land cover data (urban/rural distinction) 
Since the indicator measures the access 
of rural populations, it's important to define what 
is and what isn't rural. This implementation uses 
primarily the DegUrba Methodology, proposed 
by the UN Expert Group on Statistical 
Methodology for Delineating Cities and Rural 
Areas (United Nations Expert Group, 2019). This 
approach has been developed by the European 
Commission into the Global Human Settlement 
Layer (GHS-SMOD) dataset, which is designed 
to confer consistency for definitions based on 
population density and built-up area (European 
Commission et al., 2021). While GHS-SMOD 
offers the best available temporal resolution, 
being updated at least every 5 years, its spatial 
definition (1km pixel) isn’t ideal, and in some 
cases urban areas can’t be well delineated. For 
this reason, data from NASA SEDAC CIESIN’s 
GRUMP (CIESIN et al., 2018), or Global Rural 
Urban Mapping Project, is also used. The Urban 

Extent Polygons provided by GRUMP are limited 
to the year of 1995, but have a better spatial 
definition due to generalization of pixels into 
concave hull vectors. The GHS-SMOD and 
GRUMP datasets were put together and the 
overlap of urban areas from both datasets is 
used as the final urban land cover extent to be 
excluded from the analysis for RAI. 

Population distribution 
The source for population distribution data is 
WorldPop (WorldPop, 2023). It uses national 
census data, projections and other ancillary data 
from countries to produce aggregated, 100m² 
population data, making it the most spatially 
disaggregated population data currently 
available at global scale. 

Road extent 
One of the main issues identified in previous 
attempts to calculate RAI at global scale is 
ensuring that all roads are being taken into 
account. To respond to that, a redundancy 
strategy is used by simultaneously adopting 
three widely-recognized road datasets: the real-
time updated, crowd-sourced OpenStreetMap 
(OSM, 2023), GLOBIO’s 2018 GRIP database 
(Meijer et al., 2018), which draws data from 
official national sources, and Microsoft BING’s 
Road Detection Project (Microsoft Bing, 2023), 
which identifies roads through Neural Network 
models. Each of these sources represents at 
least one advantage compared to the others: 

• The GRIP database is the only global road 
network database containing information 
about the all-season status of roads, but to 
the detriment of its temporal resolution – 
which is restricted to the year of 2018 – and 
its coverage, restricted to what national 
authorities could provide at the time. 
 

• OpenStreetMap (2022 reference year) 
provides excellent temporal resolution and 
at least two attributes from which the all-
season status can be derived: surface and 
hierarchy. Although it provides good 
coverage, the network is limited by the 
volunteers’ interest in certain regions, which 
might skew the coverage towards urban 
centres to the detriment of rural areas. 
 

•  Microsoft Bing’s recent Road Detection 
(2022 reference year) project is used to 
ensure completeness. This dataset is 
completely derived from machine learning 
methods applied over satellite imagery, and 
detected 1,165 km of roads missing from 



OSM, though there are currently no 
attributes associated to any of the roads. 

The three datasets are put together in order to 
generate two final road subsets, all-season 
(paved) and exposed (unpaved). The distinction 
is important, as unpaved roads deteriorate 
rapidly and in a different way to paved roads 
(Workman and McPherson, 2019): unpaved 
roads are more exposed to water ingress to the 
surface, softening materials and making them 
vulnerable to traffic. 

 The first subset contains roads classified as all-
season by GRIP and roads tagged as paved 
and/or as a hierarchy often (≥60%) associated 
with paved surfaces by OpenStreetMap (see 
Table 1). The population living within 2 km of 
these roads will be considered to have full access 
to an all-season road. The second subset 
contains all roads identified by Microsoft Bing’s 
Road Detection project (as those aren’t qualified 
in any way) and roads tagged as unpaved and/or 
as any of the remaining hierarchy tags, given that 
they’re not also tagged as paved by 
OpenStreetMap. 

 The roads in the second subset are considered 
to be exposed to factors associated with difficulty 
of access. Their probability of being all-season is 
calculated by the superimposition of passability 
criteria, which are described in the following 
section. The population living within 2km of these 
roads will be considered in equal proportion to 
the probability that the road provides all-season 
access (i.e. if it’s established that there’s a 10% 

chance that a road is all-season, only 10% of the 
population living within 2km of it will be 
considered to have access to it). 

Roads’ all-season status 
The World Bank's original 2006 methodology 
defines the term all-season as “… a road that is 
motorable all year round by the prevailing means 
of rural transport, allowing for occasional 
interruptions of short duration” (Roberts, Shyam, 
& Rastogi, 2006). TRL's 2019 (Workman and 
McPherson, 2019) methodology proposed that 
passability should equate to the all-season status 
of a road, along with the assumption that typically 
the wet season is when roads become 
impassable, especially so in steep roads that are 
more exposed to landslides. 

 This dataset implements a passability index, 
where each component is used as a multiplying 
factor ranging from near 0 to 1 over the 
population distribution layer whenever they’re 
located exclusively inside a buffer generated by 
an exposed (unpaved) road. The proposed use 
of passability factors relies on the following 
aspects: 
• Climate. Precipitation has a significant effect 

on the condition of unpaved roads, being a 
significant factor in its deterioration. We use 
the Copernicus Programme’s (C3S, 2017) 
yearly accumulated precipitation data, 
which is made available freely at ~30km 
pixel resolution for reference year 2022. 
 

   

Table 1 Field criteria used for each road subset 

Source Field criteria for inclusion Final subset 

OpenStreetMap 

highway = primary, primary_link, secondary, secondary_link, trunk, 
trunk_link, motorway, motorway_link  

AND/OR 

surface = paved, asphalt, chipseal, concrete, plates, paving_stones, sett, 
unhewn_cobblestone, cobblestone, metal, wood 

(1) All-season 

GLOBIO’S GRIP    IsSeasonal = 2 (No, all year access) 

OpenStreetMap 

highway = unclassified, track, service, road, footway, bridleway, steps, 
path, tertiary, tertiary_link 

AND/OR 

surface = unpaved, compacted, fine_gravel, gravel, rock, pebblestone, 
ground, dirt, earth, grass, grass_paver, mud, sand, woodchips, snow, ice, 
salt 

(2) Exposed 

Microsoft BING 
Road Detection None (all roads included) 



• Terrain. The gradient and altitude of roads 
also has an effect on their passability. Steep 
roads become impassable more easily due 
to the potential for scouring during heavy 
rainfall, and also due to slipperiness as a 
result of the road surface materials used. 
Here this is drawn from slope calculated 
from SRTM Digital Terrain data (Jarvis et al., 
2007), provided at ~30m pixel resolution. 
 

• Road maintenance. The ability of local 
authorities to repair damage caused by 
precipitation and scouring is proposed as a 
correcting factor to the previous ones. 
Ideally, this would be measured by the % of 
GDP invested in road construction and 
maintenance, but this isn't available for all 
countries. For this reason, GDP per capita 
for reference year 2022 is adopted as a 
proxy, as provided by the World Bank 
(World Bank, 2023). 

 
It’s important to note that, differently from the 
suggestions of datasets made by TRL (Workman 
and McPherson, 2019), we exclusively chose 
datasets with at least medium spatial resolution, 
in raster format, and with temporal resolution of 
at least 1-year. This ensures that the results 
won’t be the exactly the same when RAI is 
calculated every year. 

In order for RAI to account for the probability that 
the roads people are using in are all-season or 
not, the disaggregated factors for accessibility 
are applied to the spatialized disaggregated 
population data at pixel level through raster 
algebra. The final passability index is measured 
on a scale of 0 to 1, with 1 being 100% 
probability that the roads are all-season. For 
example, a road in a flat area with low rainfall and 
high investment in infrastructure maintenance 
would have an accessibility factor of 1.0, as this 
road is designed to be accessible all year round 
and the environmental effects on its impassability 
are minimal. The lower and upper thresholds for 

the each one of the factors ranges are close but 
never reach 0 and 1, ensuring that when 
multiplied, the final passability gets incrementally 
closer to 0 in the lower end and 1 in the higher 
end. 

The multiplication of the climate and terrain 
factors (each ranging from 0.25 to 0.95) 
generates the first iteration of the passability 
criteria, which ranges from 6% to 90% (0.0625 – 
0.9025). This first iteration does not take road 
maintenance into account.  

 The GDP per capita data is then normalized in 
such a way that a road maxed out in terms of 
precipitation and slope (accessibility score of 
0.0625) in a country at the top of the GDP per 
capita range is brought to the higher end of the 
accessibility score (1), while the accessibility 
score of a road meeting the same passability 
conditions in a country where GDP per capita is 
towards the lower end is further lowered. A 
mathematical threshold is applied in order to 
ensure that values higher than 1 are replaced by 
the final range’s maximum (1, or 100%). 

 

The multiplication of the three factors take place 
in a GIS environment, through raster algebra, 

 

Table 2 Passability criteria and range transformations 

Data source Original range Normalized range 

Yearly accumulated precipitation 
(Copernicus) 0 – 10 m 0.25 – 0.95 (reversed) 

Slope (SRTM Digital Terrain) 0 – 90 degrees 0.25 – 0.95 (reversed) 

GDP per capita 221 – 234,315 USD 0.6 - 17 

Table 3 Showcase of multiplication results for the 
first iteration of passability criteria 

 

Terrain 

Minimum 
(0.25) 

Median 
(0.85) 

Maximum 
(0.95) 

Climate 

Minimum 
(0.25) 0.06 0.21 0.23 

Median 
(0.9) 0.22 0.76 0.85 

Maximum 
(0.95) 0.23 0.85 0.95 



with the smaller pixel size being the final 
resolution. The final index ranges from virtually 0 
to 1. 

Table 4 Showcase of multiplication results for the 
second iteration of passability criteria 

 

Terrain x Climate 

Minimum 
(0.06) 

Median 
(0.76) 

Maximum 
(0.95) 

GDP 
per 

capita 

Minimum 
(0.6) 0.03 0.45 0.57 

Median 
(0.93) 0.05 0.7 0.88 

Maximum 
(17) 1 1 1 

 
 
Data processing 
 
The data processing begins with filtering out all 
the pixels overlapping areas classified as urban 
from the population layer. The result is a rural 
population raster layer at 100m pixel resolution. 

The two subsets of roads (all-season and 
exposed) have a 2km buffer applied to them. As 
this operation is quite resource-intensive at a 
global scale, the roads are rasterized, a 
Euclidean distance calculation is performed, and 
all pixels with values higher than 2km are filtered 
out. 

 

The layers for precipitation, slope and road 
maintenance are rescaled and realigned to 
match the pixel grid in the rural population layer, 
allowing for raster algebra operations that do not 
require resampling. The three layers are 
multiplied by one another (limiting the upper 
threshold to 1), creating the passability index 
layer. 

Pixels from the rural population layer falling over 
exposed road buffers have their values multiplied 
by the passability index. The resulting probability 
corrected population layer is combined with the 
population falling over all-season road buffers 
through raster algebra by making use of a 
maximum rule. This ensures that whenever the 
same population pixel is intersected by buffers of 
the two road subsets, the largest value (not 
corrected by the passability index) is kept. The 
resulting layer represents the rural population 
with access to an all-season road. 

The total rural population and the rural population 
with access to an all-season road raster layers 
are each used as input for zonal statistics 
operations to determine the total sum by country. 
The population with access is divided by the total 
rural population in order to obtain the proportion, 
which is the final Rural Access Index (RAI).  

 

  

Figure 2 Overview of data processing 



Data validation 
 
Several checks were performed in order to 
assess the validity of the data produced. 

 Construct validity is assessed by calculating the 
correlation coefficient with other previous 
attempts at calculating RAI. The two other pre-
existing datasets covering RAI at national scale 
globally are distributed by NASA SEDAC’s 
CIESIN (CIESIN, 2022) and by Azavea (Azavea, 
2019). Both implemented simpler 
methodologies, either by using exclusively the 
GRIP database and removing roads not 
classified as all-season or by removing roads not 
tagged as very high hierarchy level from 
OpenStreetMap. Table 5 presents the Pearson 
coefficient found for each of the datasets. 
Though the coefficients are high (>80), it’s 
adequate that they aren’t extremely high (>95), 
showing that implementing the present method 
does yield different results, arguably better ones. 

 

 
Convergent validity is assessed through 
correlation coefficients regarding variables that 
are expected to correlate with rural accessibility. 
Here GDP per capita and the Human 
Development Index (HDI) for the same reference 
year (2022) are used. Table 6 presents the 
Pearson coefficients found for each variable. It’s 
telling that RAI has a high correlation (0.76) with 
HDI, as both can be used as evidence to shield 
or validate claims about the state of social justice 
or injustice. 

 
 
 
 
 
 

Known limitations 
 
Scale considerations 
Some very small countries, such as Small Island 
Developing States (SIDS), are excluded from the 
final result if considered to be entirely urban by 
the land cover layers used (GRUMP and GHS-
SMOD). The remaining small island states with 
rural populations will tend to achieve very high 
scores, as the road infrastructure distribution will 
tend to be much more homogeneous where the 
rural-urban divide is less clear. 

Mobility infrastructure not included 
While access to all-season roads offers a fair 
representation of a population’s overall 
accessibility and mobility, it might provide and 
under-assessment in places where 
transportation by other means, such as 
motorcycle trails and navigable waterways, are 
relevant. Communities living in the Amazon 
rainforest, for example, are highly dependent on 
fluvial transportation, which represented as much 
as 13% of the total modal share in Brazil as a 
whole in 2012 according to the Brazilian Agency 
for National Aquatic Transportation (ANTAQ). To 
respond to this limitation, the 2019 TRL 
methodology (Workman and McPherson, 2019) 
recommended that a secondary, supplementary 
indicator be developed to allow countries to take 
into account local infrastructure that might not be 
included in the standard RAI measurement. 

Ground-truthing and construct validity 
No ground-truth is assessed at any point in this 
implementation. The SDG Transformation Center 
is interested in designing and executing a new 
project specifically to this end, with the final 
objective of refining passability factors and the 
overall methodology. The project would assess 
road conditions through remote or on-site 
methods such as visiting and interviewing 
communities to ascertain how long roads might 
be closed due to climate or terrain issues. The 
results of the ground truthing would then be 
compared to the desktop assessment, and used 
to refine the accessibility factors as necessary, 
enhancing the indicator’s robustness. 

GDP as a proxy for road maintenance 
While data on infrastructure maintenance related 
to preserving the existing transport network 
exists, it’s collected by ITF only for OECD 
countries. This proxy is to be revisited in the 
future should any better options become 
available.  

Table 5 Construct validity results 

 
CIESIN  

(NASA SEDAC 
methodology) 

Azavea  
(simplified ReCAP 

methodology) 

Pearson 
coefficient 0.88 0.81 

Table 6 Convergent validity results 

 
GDP per 

capita 
Human 

Development Index 

Pearson 
coefficient 0.43 0.76 
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